Publications

Independent publications:

86. Guan, M., Wang, M., Zhanghao, K., Zhang, X., Li, M., Liu, W., Niu, J., Yang, X., Chen, L., Jing, Z., Zhang, M. Q., Jin, D., Xi, P., & Gao, J. (2022). Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. Light: Science and Applications, 11(1), 1–13.

85. Wang, L., Li, J., Chen, Y., Guo, Y., Yang, Z., Weng, X., Yan, W., & Qu, J. (2022). Implementation of a fluorescence spatiotemporal modulation super-resolution microscope. Optics Letters, 47(3), 581.

84. Yuan, Y., Liu, W., Wang, Y., Yang, L., Xu, F., Hao, X., Han, Y., Kuang, C., & Liu, X. (2022). Dual-color simultaneous structured illumination microscopy based on galvo-mirrors. Optics Communications, 511, 128012.

83. Kamińska, I., Bohlen, J., Yaadav, R., Schüler, P., Raab, M., Schröder, T., Zähringer, J., Zielonka, K., Krause, S., & Tinnefeld, P. (2021). Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy. Advanced Materials, 33(24), 2101099.

82. Böning, D., Wieser, F. F., & Sandoghdar, V. (2021). Polarization-Encoded Colocalization Microscopy at Cryogenic Temperatures. ACS Photonics, 8(1), 194–201.

81. Bowman, A. J., & Kasevich, M. A. (2021). Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution. ACS Nano, 15(10), 16043–16054.

80. Cainero, I., Cerutti, E., Faretta, M., Dellino, G. I., Pelicci, P. G., Diaspro, A., & Lanzanò, L. (2021). Measuring nanoscale distances by structured illumination microscopy and image cross-correlation spectroscopy (Sim-iccs). Sensors, 21(6), 1–13.

79. Dasgupta, A., Deschamps, J., Matti, U., Hübner, U., Becker, J., Strauss, S., Jungmann, R., Heintzmann, R., & Ries, J. (2021). Direct supercritical angle localization microscopy for nanometer 3D superresolution. Nature Communications, 12(1).

78. Leonetti, M., Pattelli, L., De Panfilis, S., Wiersma, D. S., & Ruocco, G. (2021). Spatial coherence of light inside three-dimensional media. Nature Communications, 12(1), 1–9.

77. La, H. L., & Bekkers, R. (2021). Science and Technology Relatedness: The Case of DNA Nanoscience and DNA Nanotechnology. In A. Pyka & K. Lee (Eds.), Economic Complexity and Evolution (pp. 29–61). Springer International Publishing.

76. Liu, S., Zhang, Z., Han, Y., Yang, L., Kuang, C., & Liu, X. (2021). Ratiometric photon reassignment based on fluorescence lifetime to improve resolution in pulse STED microscopy. Optics Letters, 46(13), 3304.

75. Löschberger, A., Novikau, Y., Netz, R., Spindler, M.-C., Benavente, R., Klein, T., Sauer, M., Kleppe, I., Löschberger, A., Novikau, Y., Netz, R., Kleppe, I., Spindler, M.-C., Benavente, R., Klein, T., & Sauer, M. (2021). Super-Resolution Imaging by Dual Iterative Structured Illumination Microscopy. BioRxiv, 2021.05.12.443720.

74. Mau, A., Friedl, K., Leterrier, C., Bourg, N., & Lévêque-Fort, S. (2021). Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields. Nature Communications, 12(1), 1–11.

73. McCluskey, K. A., van Veen, E. N. W., Cnossen, J. P., Wesselink, W. J., Asscher, F. M., Smith, C. S., & Dekker, N. H. (2021). Global correction of optical distortions in multicolor single-molecule microscopy using Zernike polynomial gradients. Optics Express, 29(25), 42251.

72. Montero Llopis, P., Senft, R. A., Ross-Elliott, T. J., Stephansky, R., Keeley, D. P., Koshar, P., Marqués, G., Gao, Y. S., Carlson, B. R., Pengo, T., Sanders, M. A., Cameron, L. A., & Itano, M. S. (2021). Best practices and tools for reporting reproducible fluorescence microscopy methods. Nature Methods, 18(12), 1463–1476.

71. Rahmanseresht, S., Lee, K. H., O’Leary, T. S., McNamara, J. W., Sadayappan, S., Robbins, J., Warshaw, D. M., Craig, R., & Previs, M. J. (2021). The N terminus of myosin-binding protein C extends toward actin filaments in intact cardiac muscle. Journal of General Physiology, 153(3).

70. Sampietro, M., Zamai, M., Díaz Torres, A., Labrador Cantarero, V., Barbaglio, F., Scarfò, L., Scielzo, C., & Caiolfa, V. R. (2021). 3D-STED Super-Resolution Microscopy Reveals Distinct Nanoscale Organization of the Hematopoietic Cell-Specific Lyn Substrate-1 (HS1) in Normal and Leukemic B Cells. Frontiers in Cell and Developmental Biology, 9, 655773.

69. Wang, L., Chen, Y., Guo, Y., Xie, W., Yang, Z., Weng, X., Yan, W., & Qu, J. (2021). Low-power STED nanoscopy based on temporal and spatial modulation. Nano Research, 1–8.

68. Zelger, P., Bodner, L., Offterdinger, M., Velas, L., Schütz, G. J., & Jesacher, A. (2021). Three-dimensional single molecule localization close to the coverslip: a comparison of methods exploiting supercritical angle fluorescence. Biomedical Optics Express, 12(2), 802.

67. Gonzalez Pisfil, M., Rohilla, S., König, M., Krämer, B., Patting, M., Koberling, F., & Erdmann, R. (2021). Triple-Color STED Nanoscopy: Sampling Absorption Spectra Differences for Efficient Linear Species Unmixing. Journal of Physical Chemistry B, 125(22), 5694–5705.

66. Szalai, A. M., Siarry, B., Lukin, J., Giusti, S., Unsain, N., Cáceres, A., Steiner, F., Tinnefeld, P., Refojo, D., Jovin, T. M., & Stefani, F. D. (2021). Super-resolution Imaging of Energy Transfer by Intensity-Based STED-FRET. Nano Letters, 21(5), 2296–2303.

65. Chhatre, A., Sanghavi, P., & Mallik, R. (2020). Lis1 co-localizes with actin in the phagocytic cup and regulates phagocytosis. Cytoskeleton, 77(7), 249–260.

64. Simoncelli, S., Griffié, J., Williamson, D. J., Bibby, J., Bray, C., Zamoyska, R., Cope, A. P., & Owen, D. M. (2020). Multi-color Molecular Visualization of Signaling Proteins Reveals How C-Terminal Src Kinase Nanoclusters Regulate T Cell Receptor Activation. Cell Reports, 33(12).

63. Mau, A., Friedl, K., Leterrier, C., Bourg, N., & Lévêque-Fort, S. (2020). Fast scanned widefield scheme provides tunable and uniform illumination for optimized SMLM on large fields of view. BioRxiv, 2(d), 1–19.

62. Waithe, D., Brown, J. M., Reglinski, K., Diez-Sevilla, I., Roberts, D., & Eggeling, C. (2019). Object Detection Networks and Augmented Reality for Cellular Detection in Fluorescence Microscopy Acquisition and Analysis. BioRxiv, 219(10), e201903166.

61. Durand, A., Wiesner, T., Gardner, M. A., Robitaille, L. É., Bilodeau, A., Gagné, C., De Koninck, P., & Lavoie-Cardinal, F. (2018). A machine learning approach for online automated optimization of super-resolution optical microscopy. Nature Communications, 9(1).

60. Weiss, L. E., Ezra, Y. S., Goldberg, S., Ferdman, B., Adir, O., Schroeder, A., Alalouf, O., & Shechtman, Y. (2020). Three-dimensional localization microscopy in live flowing cells. Nature Nanotechnology, 3.

59. Cnossen, J., Hinsdale, T., Thorsen, R. Ø., Siemons, M., Schueder, F., Jungmann, R., Smith, C. S., Rieger, B., & Stallinga, S. (2020). Localization microscopy at doubled precision with patterned illumination. Nature Methods, 17(1), 59–63.

58. Alvelid, J., & Testa, I. (2020). Stable stimulated emission depletion imaging of extended sample regions. Journal of Physics D: Applied Physics, 53(2), ab4c13.

57. Lin, R., Clowsley, A. H., Lutz, T., Baddeley, D., & Soeller, C. (2020). 3D super-resolution microscopy performance and quantitative analysis assessment using DNA-PAINT and DNA origami test samples. Methods, 174, 56–71.

56. Gwosch, K. C., Pape, J. K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., & Hell, S. W. (2020). MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nature Methods, 17(2), 217–224.

55. Li, W., Tong, Z., Xiao, K., Liu, Z., Gao, Q., Sun, J., Liu, S., Han, S., & Wang, Z.-Y. (2019). Single frame wide-field Nanoscopy based on Ghost Imaging via Sparsity Constraints (GISC Nanoscopy). Optica, 6, 1515–1523.

54. Höfig, H., Yukhnovets, O., Remes, C., Kempf, N., Katranidis, A., Kempe, D., & Fitter, J. (2019). Brightness-gated two-color coincidence detection unravels two distinct mechanisms in bacterial protein translation initiation. Communications Biology, 2(1), 1–8.

53. Wang, L., Bateman, B., Zanetti-Domingues, L. C., Moores, A. N., Astbury, S., Spindloe, C., Darrow, M. C., Romano, M., Needham, S. R., Beis, K., Rolfe, D. J., Clarke, D. T., & Martin-Fernandez, M. L. (2019). Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution. Communications Biology, 2(1), 1–11.

52. Vietz, C., Schütte, M. L., Wei, Q., Richter, L., Lalkens, B., Ozcan, A., Tinnefeld, P., & Acuna, G. P. (2019). Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS Omega, 4(1), 637–642.

51. Suárez, Y. G., Martínez, J. L., Hernández, D. T., Hernández, H. O., Pérez-Delgado, A., Méndez, M., Wood, C. D., Rendon-Mancha, J. M., Silva-Ayala, D., López, S., Guerrero, A., & Arias, C. F. (2019). Nanoscale organization of rotavirus replication machineries. ELife, 8.

50. Alvelid, J., & Testa, I. (2019). Tiled STED Imaging of Extended Sample Regions. BioRxiv, 789487.

49. Castello, M., Tortarolo, G., Buttafava, M., Deguchi, T., Villa, F., Koho, S., Pesce, L., Oneto, M., Pelicci, S., Lanzanó, L., Bianchini, P., Sheppard, C. J. R., Diaspro, A., Tosi, A., & Vicidomini, G. (2019). A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nature Methods, 16(2), 175–178.

48. Schröder, T., Scheible, M. B., Steiner, F., Vogelsang, J., & Tinnefeld, P. (2019). Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures. Nano Letters, 19(2), 1275–1281.

47. Descloux, A., Grußmayer, K. S., & Radenovic, A. (2019). Parameter-free image resolution estimation based on decorrelation analysis. Nature Methods, 16(9), 918–924.

46. Braun, U., Harneit, A., Pergola, G., Menara, T., Schaefer, A., Betzel, R. F., Zang, Z., Schweiger, J. I., Schwarz, K., Chen, J., Blasi, G., Bertolino, A., Durstewitz, D., Pasqualetti, F., Schwarz, E., Meyer-Lindenberg, A., Bassett, D. S., Tost, H., Bonacci, L. M., & Shinn-cunningham, B. G. (2019). bioRxiv preprint doi: https://doi.org/10.1101/682088 . The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. BioRxiv, 32(0), 1–32.

45. Tortarolo, G., Castello, M., Koho, S., & Vicidomini, G. (2019). Synergic Combination of Stimulated Emission Depletion Microscopy with Image Scanning Microscopy to Reduce Light Dosage. BioRxiv, ii.

44. Vietz, C., Schütte, M. L., Wei, Q., Richter, L., Lalkens, B., Ozcan, A., Tinnefeld, P., & Acuna, G. P. (2019). Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS Omega, 4(1), 637–642.

43. Weiss, L. E., Ezra, Y. S., Goldberg, S. E., Ferdman, B., & Shechtman, Y. (2019). High-throughput multicolor 3D localization in live cells by depth-encoding imaging flow cytometry. BioRxiv, 730101.

42. Harland, D. P., Novotná, V., Richena, M., Bostina, M., Velamoor, S., & McKinnon, A. J. (2019). Hair-Structure Mystery Solved by Datamining Two Decades of Electron Tomograms. Microscopy and Microanalysis, 25(S2), 1348–1349.

41. Oneto, M., Scipioni, L., Sarmento, M. J., Cainero, I., Pelicci, S., Furia, L., Pelicci, P. G., Dellino, G. I., Bianchini, P., Faretta, M., Gratton, E., Diaspro, A., & Lanzanò, L. (2019). Nanoscale Distribution of Nuclear Sites by Super-Resolved Image Cross-Correlation Spectroscopy. Biophysical Journal, 117(11), 2054–2065.

40. Combs, C. A., Sackett, D. L., & Knutson, J. R. (2019). A simple empirical algorithm for optimising depletion power and resolution for dye and system specific STED imaging. Journal of Microscopy, 274(3), 168–176.

39. Harland, D. P., Novotna, V., Richena, M., Velamoor, S., Bostina, M., & McKinnon, A. J. (2019). Helical twist direction in the macrofibrils of keratin fibres is left handed. Journal of Structural Biology, 206(3), 345–348.

38. Caccia, M., Nardo, L., Santoro, R., & Schaffhauser, D. (2019). Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 926(November 2018), 101–117.

37. Yu, J.-Y., Becker, S. R., Folberth, J., Wallin, B. F., Chen, S., & Cogswell, C. J. (2018). Achieving superresolution with illumination-enhanced sparsity. Optics Express, 26(8), 9850.

36. Guo, M., Chandris, P., Giannini, J. P., Trexler, A. J., Fischer, R., Chen, J., Vishwasrao, H. D., Rey-Suarez, I., Wu, Y., Wu, X., Waterman, C. M., Patterson, G. H., Upadhyaya, A., Taraska, J. W., & Shroff, H. (2018). Single-shot super-resolution total internal reflection fluorescence microscopy. Nature Methods, 15(6), 425–428.

35. Antolović, I. M. (2018). SPAD imagers for super resolution microscopy.

34. Davis, J. L., Dong, B., Sun, C., & Zhang, H. F. (2018). Method to identify and minimize artifacts induced by fluorescent impurities in single-molecule localization microscopy. Journal of Biomedical Optics, 23(10), 1–14.

33. Dienerowitz, M., Dienerowitz, F., & Börsch, M. (2018). Measuring nanoparticle diffusion in an ABELtrap. Journal of Optics, 20(3), 34006.

32. He, Y., Xu, W., Zhi, Y., Tyagi, R., Hu, Z., & Cao, G. (2018). Rapid bacteria identification using structured illumination microscopy and machine learning. Journal of Innovative Optical Health Sciences, 11(1).

31. Staszowska, A. D., Fox-Roberts, P., Hirvonen, L. M., Peddie, C. J., Collinson, L. M., Jones, G. E., & Cox, S. (2018). The Rényi divergence enables accurate and precise cluster analysis for localization microscopy. Bioinformatics, 34(23), 4102–4111.

30. Nicholls, T. J., Nadalutti, C. A., Motori, E., Sommerville, E. W., Gorman, G. S., Basu, S., Hoberg, E., Turnbull, D. M., Chinnery, P. F., Larsson, N. G., Larsson, E., Falkenberg, M., Taylor, R. W., Griffith, J. D., & Gustafsson, C. M. (2018). Topoisomerase 3α Is Required for Decatenation and Segregation of Human mtDNA. Molecular Cell, 69(1), 9-23.e6.

29. Coelho, S., Baek, J., Graus, M. S., Halstead, J. M., Nicovich, P. R., Feher, K., Gandhi, H., & Gaus, K. (2018). Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision. BioRxiv, 487728

28. Harry A. T. Pritchard, Paulo W. Pires, Evan Yamasaki, Pratish Thakore, Scott Earley: Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. PNAS Sep 2018, 201804593.

27. Schmidt NC, Kahms M, Hüve J, Klingauf J. Intrinsic refractive index matched 3D dSTORM with two objectives: Comparison of detection techniques. Scientific Reports. 2018;8:13343.

26. Marsh RJ., Pfisterer K., Bennett P., Hirvonen LM., Gautel M., Jones GE., Cox S. (2018): Artifact-free high-density localization microscopy analysis - Nature Methods

25. Mailfert S., Touvier J., Benyoussef L., ... Bertaux N. (2018): A Theoretical High-Density Nanoscopy Study Leads to the Design of UNLOC, a Parameter-free Algorithm - Biophysical Journal

24. Raab, M., Jusuk, I., Molle, J., Buhr, E., Bodermann, B., Bergmann, D., Bosse, H., Tinnefeld, P. (2018): Using DNA origami nanorulers as traceable distance standards and nanosocopic benchmark structures – Sci Rep, 8, 1

23. Tortarolo, G., Castello, M., Diaspro, A., Koho, S. & Vicidomini, G. (2018): Evaluating image resolution in stimulated emission depletion microscopyOptica, 5, 1

22. Göttfert, F. et al. (2017): Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent – Proc Natl Acad Sci USA doi:10.1073/pnas.1621495114

21. K. Korobchevskaya, H. Colin-York, C. Lagerholm, M. Fritzsche (2017): Exploring the Potential of Airyscan Microscopy for Live Cell Imaging – Photonics, 4, 41

20. Q. Wei, G. Acuna, S. Kim, C. Vietz, D. Tseng, J. Chae, D. Shir, W. Luo, P. Tinnefeld, A. Ozcan (2017): Plasmonics Enhanced Smartphone Fluorescence MicroscopySci Rep, 7, 2124

19. R. Lin, A. Clowsley, I. Jayasinghe, D. Baddeley, C. Soeller (2017): Algorithmic corrections for localization microscopy with sCMOS cameras - characterisation of a computationally efficient localization approachOpt Express, 25, 11701-11716

18. S. Tajada, C. Moreno, S. O'Dwyer, S. Woods, D. Sato, M. Navedo, L. Santana (2017): Distance constraints on activation of TRPV4 channels by AKAP150-bound PKCa in arterial myocytesJ Gen Physiol, 149, 639-659

17. M. Schropp, C. Seebacher, R. Uhl (2017): XL-SIM: Extending Superresolution into Deep LayersPhotonics, 4, 33

16. R. Diekmann, Ø. Helle, C. Øie, P. McCourt, T. Huser, M. Schüttelpelz, B. Ahluwalia (2017): Chip-based wide field-of-view nanoscopyNature Photonics

15. R. Lin, A. H. Clowsley, I. D. Jayasinghe, D. Baddeley, C. Soeller (2017): Algorithmic corrections for localization microscopy with sCMOS cameras - characterisation of a computationally efficient localization approachOpt. Express, 25, 11701-11716

14. I. M. Antolovic, S. Burri, C. Bruschini, R. A. Hoebe, E. Charbon (2017): SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking – Scientific Reports, 7, 44108

13. M. Heilemann, F. Fricke, C. Karathanasis, G. Hummer (2017): Molecule counts in localization microscopy with organic fluorophores – ChemPhysChem

12. M. Dienerowitz, T. Heitkamp, T. Gottschall, J. Limpert, M. Borsch (2017): Confining Brownian motion of single nanoparticles in an ABELtrap – arXiv.org

11. F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, S. W. Hell (2017): Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent PNAS

10. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynna, V. Westphal, F. D. Stefani, J. Elf, S. W. Hell (2016): Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes – Science

9. T. J. Lambert, J. C. Waters (2016): Navigating challenges in the application of superresolution microscopy – J Cell Biol

8. S. C. Sidenstein, E. D'Este, M. J. Böhm, J. G. Danzl, V. N. Belov, S. W. Hell (2016): Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at SynapsesScientific Reports, 6, 26725

7. B. J. Glasgow (2016): Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami – Proc. SPIE9714

6. S. Schedin-Weiss, I. Caesar, B. Winblad, H. Blom, L. O. Tjernberg (2016): Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse – Acta Neuropathologica Communications, 4:29

5. R. T. Borlinghaus, C. Kappel (2016): HyVolution—the smart path to confocal super- resolution – Nature Methods, 13

4. I. Gyongy, A. Davies, N. Dutton, R. Duncan (2016): Smart-Aggregation Imaging for Single Molecule Localization with SPAD Cameras – arXiv.org

3. N. Chiaruttini, L. Redondo-Morata, A. Colom, F. Humbert, M. Lenz, S. Scheuring, A. Roux (2015): Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation – Cell, 163, 1-14

2. J. Huff, W. Bathe, R. Netz, T. Anhut, K. Weisshart, Carl Zeiss Microscopy GmbH (2015): Confocal Imaging with improved Signal-to-Noise Ratio and Superresolution – The Airyscan Detector from ZEISS

1. C. Kappel, I. Köster, Leica Microsystems (2015): Increasing Confocal Resolution Down to 140 nm – HyVolution Confocal Super-Resolution Reveals More Details in Crisp Images – Science Lab

 

Own publications:

15. Scheckenbach, M., Bauer, J., Zähringer, J., Selbach, F., & Tinnefeld, P. (2020). DNA origami nanorulers and emerging reference structures. APL Materials, 8(11), 110902.

14. Scheible, M.B., Tinnefeld, P. (2018): Quantifying Expansion Microscopy with DNA Origami Expansion Nanorulers – bioRxiv

13. B. Eggart, M. Scheible, C. Forthmann (2017): Beyond the Diffraction LimitOptik & Photonik, 2, 26

12. J.J. Schmied, R. Dijkstra, M. Scheible, G. M. R. De Luca, J. J. Sieber, GATTAquant GmbH, Scientific Volume Imaging (SVI), Leica Microsystems (2016): Measuring the 3D STED PSF with a new Type of Fluorescent Beads Science Lab

11. B. Eggart, M. Scheible, C. Forthmann (2016): Using Super-Resolution Nanorulers to study the Capabilities of EM-CCD and sCMOS Cameras beyond the Diffraction Limit – Hamamatsu Aplication Note

10. J.J. Schmied (2016): Testing and Pushing the Limits of Super-Resolution Microscopy – Optik & Photonik, 11, 23-26

9. Ta, H., J. Keller, M. Haltmeier, S. K. Saka, J. Schmied, F. Opazo, P. Tinnefeld, A. Munk, S. W. Hell (2015): Mapping molecules in scanning far-field fluorescence nanoscopy – Nature Commun., 6, 7977

8. J.J. Schmied, C. Forthmann, M. Scheible, GATTAquant GmbH (2015): Innovative Tools for Fluorescence MicroscopyImaging & Microscopy, 17, 20-21

7. J.J. Schmied, C. Forthmann, T. Straube, GATTAquant GmbH, Leica Microsystems (2015):  Quantifying the Resolution of a Leica SR GSD 3D Localization Microscopy System with 2D and 3D NanorulersScience Lab

6. J.J. Schmied, M. Raab, C. Forthmann, E. Pibiri, B. Wünsch, T. Dammeyer, P. Tinnefeld (2014): DNA origami based standards for quantitative fluorescence microscopy - Nature Prot., 9, 1367–1391.

5. A. Kurz, J.J. Schmied, K. Grußmayer, P. Holzmeister, P. Tinnefeld, D.-P. Herten (2013): Counting Fluorescent Dye Molecules on DNA Origami by Means of Photon Statistics - Small, 9 (23), 4061-8.

4. J.J. Schmied, C. Forthmann, E. Pibiri, B. Lalkens, P. Nickels, T. Liedl, P. Tinnefeld (2013): DNA Origami Nanopillars as Standards for Three-dimensional Superresolution Microscopy - Nano Letters, 13 (2), 781–785.

3. J.J. Schmied, A. Gietl, Phil Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, P. Tinnefeld (2012): Fluorescence and Super-resolution Standards based on DNA Origami - Nature Methods, 9, 1133–1134.

2. Ralf Jungmann, Christian Steinhauer, Max Scheible, Anton Kuzyk, Philip Tinnefeld and Friedrich C. Simmel (2010): Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. - Nano Letters, 11:2475-2490.

1. Christian Steinhauer, Ralf Jungmann, Thomas L. Sobey, Friedrich C. Simmel and Philip Tinnefeld (2009): DNA origami as a nanoscopic ruler for super-resolution microscopy. - Angew Chem Int Ed, 48(47):8797 - 8999.

contact

GATTAquant GmbH
Staffelseestraße 8
DE-81477 München
Phone: +49 89 2153 720 80
INFO@GATTAQUANT.COM

funded by

funded by

Payment Options

Payment Options